Rabu, 30 Maret 2016

Seberapa Efektifkah Garam Beriodium?



Seberapa Efektifkah Garam Beriodium?

Iodium dengan simbol kimia I adalah elemen nonlogam penting yang diperlukan tubuh dalam jumlah renik secara terus-menerus. Kekurangan iodium, khususnya pada anak-anak, sangat mengganggu pertumbuhan dan tingkat kecerdasan.

Oleh sebab itu, Unicef (badan PBB yang mengurusi kesejahteraan anak-anak) beberapa waktu silam, melalui dutanya bintang film James Bond 007, Roger Moore, pernah secara khusus datang ke Indonesia untuk mengampanyekan penggunaan garam beriodium. Hal serupa juga dilakukan Pemda Jawa Barat melalui media TVRI Bandung sekitar Februari 2003.

Iodium di alam tidak pernah ditemukan sebagai elemen tunggal, tetapi  tersimpan di dalam senyawa, misalnya garam kalium hipoiodat (KIO). Dalam keadaan kering, garam ini sangat stabil sehingga bisa berumur lebih dari lima puluh tahun tanpa mengalami kerusakan. Itulah sebabnya mengapa garam KIO dipakai sebagai suplemen untuk program iodisasi garam (atau garam beriodium).

Garam beriodium mengandung 0,0025 persen berat KIO (artinya dalam 100 g total berat garam terkandung 2,5 mg KIO). Berikut ini dipaparkan cara sederhana untuk menghitung berapa banyak KIO yang dikonsumsi seseorang. Andaikan seorang ibu rumah tangga dalam sehari memasak satu panci sup (kapasitas 2 L) dengan menggunakan dua sendok garam beriodium (misalnya dengan berat 20 g), dan tiap-tiap anggota keluarga pada hari tersebut melahap dua mangkuk (anggap volume total kuah 100 mL). Maka, berat total garam KIO yang dikonsumsi tiap-tiap anggota keluarga itu dalam sehari (dengan asumsi tidak makan garam melalui makanan lainnya) sebesar 0,0000025 g atau 2,5 mikrogram (dari 0,0025%  20 g  100 mL/200 mL). Jumlah garam yang sangat kecil, namun sangat diperlukan.

Yang menjadi pertanyaan selanjutnya apakah kesemua 2,5 mikrogram KIO tersebut masuk ke dalam tubuh? Kalau tiap-tiap keluarga memiliki kebiasaan menaburkan garam ketika hidangan telah berada di atas meja makan (tidak pada saat memasak) maka jawabannya benar.

Kenyataannya tidak demikian. Hampir semua ibu rumah tangga selalu mencampurkan garam beriodium saat memproses makanan. Kalau hal ini dilakukan, kemungkinan besar iodium yang jumlahnya sangat kecil ini telah lenyap sebagai gas selama memasak.

Secara kimiawi, fenomena tersebut dijelaskan dari proses reduksi KIO. Reaksi reduksi ini sebenarnya berlangsung sangat lambat. Namun, laju reaksi bisa dipercepat jutaan kali lipat dengan bantuan senyawa antioksidan, keasaman larutan, dan panas. Seperti diketahui bahwa semua bahan makanan organik (hewan ataupun tanaman) selalu memiliki antioksidan, dan proses memasak selalu menggunakan panas serta terkadang ada asamnya. Dengan demikian, dapat disimpulkan bahwa penggunaan garam beriodium untuk ini menjadi sia-sia.

Percobaan sederhana untuk membuktikan lenyapnya iodium yaitu dengan mencampurkan garam beriodium dengan antioksidan (bisa berupa tumbukan cabai atau bawang) dan asam cuka, yang kemudian direbus. Iodium yang lepas bisa diamati dari larutan kanji sebagai indikator. Apabila berubah menjadi biru, pertanda iodium telah lepas sebagai gas.

Makanan laut
Sangat sulit mengubah kebiasaan ibu rumah tangga yang terbiasa membubuhi garam pada saat memproses makanan. Namun, program pemberian iodium masih bisa dilakukan dengan cara lain tanpa mengubah perilaku, yaitu melalui promosi penggunaan makanan laut. Kandungan iodium dalam makanan laut seperti ikan, kerang, cumi, atau rumput laut berkisar 0,0002 persen. Keuntungan konsumsi iodium melalui makanan laut antara lain elemen iodium tersebut tidak hilang selama pemrosesan masakan. Selain itu, jumlah yang dimakan biasanya juga lebih tinggi (apabila kita mengonsumsi 50 g ikan laut, berarti iodium yang masuk setara 100 mikrogram iodium). Mungkin ini merupakan penjelasan mengapa jarang ditemui kasus kekurangan iodium pada orang-orang Eropa. Karena sejak dulu hingga kini, mereka mempunyai kebiasaan memakan ikan laut. Setidak-tidaknya, melalui kebiasaan menyajikan ikan (tidak ada daging) sebagai menu utama pada kebanyakan restoran atau kedai-kedai di setiap hari Jumat.

Sayangnya, kebanyakan orang-orang pedalaman Indonesia tidak begitu menggemari makanan laut. Mungkin akibat kebiasaan menu ikan tidak ada, daya beli rendah, atau alergi. Namun, masalah ini masih bisa diatasi dengan mengganti ikan laut dengan rumput laut.

Jepang merupakan negara terdepan dalam konsumsi rumput laut, dan kasus kekurangan iodium juga sangat rendah di negara tersebut. Di sana, rumput laut diproses menjadi anyaman halus yang disebut nori. Nori ini dipakai sebagai berbagai pembungkus makanan, misalnya nasi kepal (onigiri) atau sushi. Selain itu, juga dipakai sebagai campuran penyedap rasa pada mi rebus, seperti ramen atau soba. Mungkin seandainya kita mau meniru, misalnya daun pisang pembungkus lemper diganti lembaran rumput laut, atau mi bakso maupun mi pangsit dibubuhi penyedap dari rumput laut, maka kasus kekurangan iodium akan berkurang di negeri ini.

Pentradisian penggunaan makanan laut hendaknya terus digalakkan karena lebih
dari 70 persen dari luas wilayah negeri ini berupa laut
Sumber: Kompas, 29 April 2003

Siapakah Antoine Lavoiser?



Siapakah Antoine Lavoiser?

"It took them only an instant to cut off that head, and a hundred years may not produce another like it"

Hanya perlu sekejap untuk memenggal kepala Lavoisier, namun seratus tahun pun mungkin tidak bisa melahirkannya kembali. Kata-kata ini diucapkan oleh ahli matematika Prancis, Joseph Louis Lagrange, beberapa saat setelah kepala Antoine Lavoisier dipenggal pada 8 Mei 1794. Siapakah Antoine Lavoisier itu sehingga Lagrange berucap seperti itu?

Antoine Laurent Lavoisier, demikian nama lengkap ilmuwan kimia Prancis yang lahir pada tahun 1743 di Paris. Selain menguasai ilmu kimia, Lavoisier juga menguasai berbagai ilmu lainnya, seperti hukum, ekonomi, pertanian, dan geologi. Sebelum menekuni ilmu kimia, Lavoisier mengikuti jejak ayahnya mempelajari ilmu hukum. Meskipun mempelajari ilmu hukum, Lavoisier menunjukkan ketertarikannya dalam ilmu sains.

Pada tahun 1768, Lavoisier terpilih menjadi anggota Academie Royale des Sciences (Akademi Sains Kerajaan Prancis), suatu komunitas ilmuwan sains. Padatahun yang sama, ia membeli Ferme Generate, perusahaan swasta yang bergerak di bidang jasa pengumpulan pajak untuk kerajaan.

Lavoisier diangkat menjadi Komisaris Polisi Kerajaan ketika berusia 32 tahun. Lavoisier diberi tangggung jawab mengelola laboratorium serbuk mesiu. Iamengembangkan laboratoriumnya dengan merekrut kimiawan-kimiawan mudadari berbagai penjuru Eropa. Lavoisier dan anak buahnya bekerja kerasmemperbaiki metode pembuatan serbuk mesiu. Ia dan timnya berhasilmeningkatkan kualitas dan kemurnian bahan baku pembuatan mesiu, yaitusendawa, belerang, dan batu bara. Hasilnya tidak mengecewakan, serbuk mesiuyang dihasilkan laboratoriumnya menjadi lebih banyak dan lebih baikdibandingkan sebelumnya. Itulah awal perkenalan Lavoisier dengan penelitiankimia. Sejak itu, Lavoisier semakin giat melakukan penelitian di bidang kimia.

Usaha keras Lavoisier didukung penuh oleh istrinya, yaitu Marie-Anne Pierrette Paulze. Marie membantu suaminya menerjemahkan tulisan kimiawan Inggris, Joseph Priestley. Selain itu, Marie-Anne Pierrette mempunyai keterampilan menggambar. Keterampilannya ini digunakan untuk menggambar hasil-hasil penelitian Lavoisier.

Sumbangan terbesar Lavoisier terhadap pengembangan ilmu kimia sehingga dijuluki bapak kimia modern adalah keberhasilannya menggabungkan semua penemuan di bidang kimia yang terpisah dan berdiri sendiri menjadi suatu kesatuan. Lavoisier membuat kerangka dasar kimia berdasarkan hasil penelitian kimiawan sebelumnya, seperti Joseph Black, Henry Cavendish, Joseph Priestley, dan George Ernst Stahl.

Pada saat itu, para ilmuwan mempercayai bahwa reaksi pembakaran menghasilkan gas flogiston sehingga massa zat setelah pembakaran lebih sedikit daripada sebelumnya. Hal ini didasarkan pada percobaan yang dilakukan Priestley. Priestley memanaskan oksida raksa (red calx mercury). Reaksi pemanasan padatan oksida raksa menghasilkan air raksa dan gas tak berwarna di atasnya. Setelah ditimbang, massa air raksa lebih sedikit daripada massa oksida raksa. Priestley menyebut gas tak berwarna itu dengan istilah flogiston. Namun tidak demikian dengan Lavoisier, ia meragukan adanya gas flogiston. Menurut dugaannya, yang dimaksud flogiston adalah gas oksigen. Kemudian, Lavoisier mengulang percobaan Priestley untuk membuktikan dugaannya. Ia menimbang massa zat sebelum dan setelah reaksi pemanasan oksida raksa secara teliti menggunakan timbangan yang peka. Ternyata, terjadi pengurangan massa oksida raksa. Lavoisier menjelaskan alasan berkurangnya massa oksida raksa setelah pemanasan. Ketika dipanaskan, oksida raksa menghasilkan gas oksigen sehingga massanya akan berkurang. Lavoisier juga membuktikan kebalikannya. Jika sebuah logam dipanaskan di udara, massanya akan bertambah sesuai dengan jumlah oksigen yang diambil dari udara. Kesimpulan Lavoisier ini dikenal dengan nama hukum kekekalan massa. Jumlah massa zat sebelum dan sesudah reaksi tidak berubah, begitu bunyi hukum tersebut. Dengan penemuan ini, teori flogiston yang dipercayai para ilmuwan kimia selama kurang lebih 100 tahun akhirnya tumbang. Lavoisier juga menyatakan proses berkeringat merupakan hasil pembakaran lambat di dalam tubuh.

Lavoisier menuliskan ide-idenya dalam sebuah buku yang berjudul Traite Elementaire de Chimie (Pokok-pokok Dasar Ilmu kimia). Buku yang dipublikasikan pada tahun 1789 itu juga memuat pendapat Lavoisier mengenai definisi unsur kimia. Lavoisier berpendapat bahwa unsur adalah zat yang tidak dapat diuraikan lagi menjadi zat yang lebih sederhana. Berdasarkan hal tersebut, Lavoisier membuat daftar 33 zat yang termasuk unsur.

Pada tahun 1789, kondisi ekonomi Prancis terguncang. Harga-harga tidak stabil. Masyarakat pun resah. Pada saat itu Lavoisier tengah asyik melakukan penelitian. Lavoisier terpaksa mengurangi kegiatan penelitiannya karena waktunya lebih banyak tercurah untuk memperbaiki kondisi ekonomi negaranya. Mereformasi pajak garam, mencegah penyelundupan dengan cara membangun benteng di sekeliling Paris, dan memperbaiki metode pertanian merupakan beberapa usahanya untuk memperbaiki ekonomi.

Walaupun memberikan banyak kontribusi terhadap sains maupun ekonomi, hidup Lavoisier terpaksa berakhir secara tragis. Ketika terjadi revolusi Prancis, seluruh pejabat dan bangsawan kerajaan ditangkap, termasuk Lavoisier. Ia dikenakan dakwaan turut aktif mengambil pajak rakyat untuk kerajaan melalui perusahaan pajaknya (Ferme Generate), menurunkan kualitas udara kota karena membangun benteng di sekeliling Paris, mencampurkan tembakau dengan air, dan memindahkan serbuk mesiu dari gudang senjata. Akhirnya Lavoisier dijatuhi hukuman mati. Sesaat sebelum eksekusi dilaksanakan, Lavoisier meminta penundaan waktu hukuman. "Saya ilmuwan bukan bangsawan", ujar Lavoisier. Tapi hakim dengan tegas menjawab, "Republik tidak memerlukan ilmuwan!". Nyawa Lavoisier melayang. Dunia berduka. Salah satu permata ilmu hilang secara sia-sia. Benar apa yang dikatakan Joseph Louis Lagrange, "Hanya perlu sekejap untuk memenggal kepala Lavoisier, namun seratus tahun pun mungkin tidak bisa melahirkannya kembali." Sayang, nasi telah menjadi bubur.
Sumber: Antoine Lavoisier (1743-1794): Hidupnya Berakhir Tragis di Tiang Gantungan
Oleh Sandri Justiana, S.Si alumnus Kimia FMIPA UnPad, Editor
Buku, dan Ketua Komunitas Kimia.

Karbit: Sang Stimulus Pematangan Buah




Dalam keseharian, terutama bagi mereka yang suka berbelanja di pasarpasar tradisional, mungkin sudah bukan hal yang asing lagi dengan kata karbit. Zat tersebut sangat akrab dengan para penjual buah pisang, karena digunakan untuk mempercepat pematangan buah pisang.

Tidak akan asing pula kata karbit bagi mereka yang kesehariannya bekerja sebagai tukang las logam (yang masih menggunakan las karbit), karena zat itu pula yang berperan sebagai sumber penghasil gas yang akan digunakan untuk pengelasan.

Jika kita buka kamus kimia untuk mencari penjelasan dari kata karbit, pada beberapa kamus mungkin tidak akan mendapatkan penjelasannya secara langsung. Akan tetapi dalam kamus tersebut kita akan mendapatkan tulisan "Lihat: Kalsium karbida". Hal ini karena zat yang selama ini kita kenal namanya dengan sebutan karbit memiliki nama kimia seperti itu. Penamaan tersebut disesuaikan dengan nama-nama unsur penyusunnya, yaitu kalsium dan karbon. Secara empiris rumus kimia untuk karbit dapat dituliskan sebagai CaC2, Ca = lambang untuk atom kalsium dan C = lambang untuk atom karbon.

           Karbit (kalsium karbida) merupakan zat padat abu-abu dan dibuat dari pemanasan kalsium oksida (batu kapur) dengan kokas (arang karbon) pada suhu sekitar 2.000° celsius. Secara kimia proses pembuatan karbit ini dapat dilukiskan dalam bentuk persamaan reaksi berikut.

CaO(s)          +        C(s)       -->      CaC(l ) +CO(g)
         Kalsium oksida         karbon                 karbit

Dari persamaan reaksi di atas dapat dilihat bahwa karbit yang dihasilkan dari reaksi tersebut berupa cairan oleh karena itu karbit cair tersebut selanjutnya didinginkan sampai memadat, sehingga jadilah karbit yang padat seperti yang sering kita lihat sehari-hari. Salah satu sifat karbit yang sering dimanfaatkan masyarakat yaitu kemampuannya untuk menghasilkan gas jika bercampur dengan air. Gas tersebut yaitu gas asetilen atau etuna dengan rumus kimia C2H. Persamaan reaksi kimianya sebagai berikut.

CaC2(s) + 2H2O(l ) à Ca(OH)2(aq) + C2H2(g)

Karbit sering digunakan sebagai stimulus pematangan buah pisang. Secara alamiah, buah pisang akan menghasilkan gas asetilen untuk mempercepat pematangan. Dengan mengenali sifat ini, proses pematangan buah akan dapat dipercepat dengan memanfaatkan sifat karbit seperti disebutkan di atas. Karbit sering digunakan untuk pengelasan logam (las karbit). Gas asetilen yang dihasilkan dari reaksi karbit dengan air adalah gas yang memiliki sifat mudah terbakar, nyala terang, dan berkalor tinggi (Mulyono HAM, 1997 : 2.500°C ; Yayan Sunarya, 2.000: 3.000°C). Oleh karena itu dengan kalor sebesar ini memungkinkan besi untuk dapat dilelehkan (titik leleh besi = 1.535°C). Inilah prinsip dasar mengapa campuran karbit dengan air dapat digunakan untuk pengelasan logam.

 (Iman Salman/Mahasiswa Kimia FPMIPA UPI. 
Sumber: Mulyono HAM, 1997: Yayan Sunarya, 2000)